Shade the bar models to represent the equivalent fractions.
a)

$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$\frac{1}{2}=\frac{3}{6}$
b)

| $\frac{1}{10}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

c) | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ | $\frac{1}{5}$ |
| :---: | :---: | :---: | :---: | :---: |

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \frac{1}{10} & \frac{1}{10} \\
\hline
\end{array}
$$

d) | $\frac{1}{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$$
\frac{6}{8}=\frac{3}{4}
$$

(2) Use the fraction wall to complete the equivalent fractions.

$\frac{1}{2}$				$\frac{1}{2}$			
$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$		$\frac{1}{4}$	
$\frac{1}{8}$							

a) $\frac{1}{2}=\frac{\square}{4}$
c) $\frac{2}{4}=\frac{4}{\square}$
e)
$\frac{\square}{8}=\frac{3}{4}$
b) $\frac{1}{2}=\frac{\square}{8}$
d) $\frac{2}{8}=\frac{\square}{4}$
f) $\frac{2}{2}=\frac{\square}{4}=\frac{\square}{8}$
a) Label the fractions on the fraction wall.

b) Use the fraction wall to complete the equivalent fractions.

$$
\begin{aligned}
& \frac{1}{3}=\frac{\square}{6}=\frac{3}{\square \square} \\
& \frac{3}{\square}=\frac{6}{\square}=\frac{\square}{\square \square}=1
\end{aligned}
$$

4
Here is a fraction wall.

$\frac{1}{2}$			1			
$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$		
$\frac{1}{4}$		$\frac{1}{4}$	$\frac{1}{4}$			$\frac{1}{4}$
$\frac{1}{5}$	$\frac{1}{5}$			$\frac{1}{5}$		$\frac{1}{5}$
$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$		$\frac{1}{6}$	$\frac{1}{6}$

Is each statement true or false? Tick your answers.
a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$
b) $\frac{2}{3}$ is equivalent to $\frac{3}{4}$
c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$
d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$
e) $\frac{2}{3}$ is equivalent to $\frac{4}{6}$
f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.
Ask a partner to say if they are true or false.

Are the statements always, sometimes or never true?
Circle your answer.
Draw a diagram to support your answer.
a) The greater the numerator, the greater the fraction.

b) Fractions equivalent to one half have even numerators.

c) If a fraction is equivalent to one half, the denominator will be double the numerator.

