Equivalent fractions (1)

Shade the bar models to represent the equivalent fractions.

 $\frac{4}{5} = \frac{8}{10}$

4

Here is a fraction wall.

$\frac{1}{2}$					<u>1</u> 2					
$\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$				<u>1</u> 3						
<u>1</u> 4			<u>1</u> 4			<u>1</u> 4		$\frac{1}{4}$		
<u>1</u> 5		<u>1</u> 5		, 	<u>1</u> 5		<u>1</u> 5	<u>1</u> 5		
<u>1</u> 6		<u> </u> 5		<u>1</u> 6	<u>1</u> 6			5	$\frac{1}{6}$	

Is each statement true or false? Tick your answers.

			True	False
a)	$\frac{1}{2}$ is equivalent to	<u>3</u> 6		
b)	$\frac{2}{3}$ is equivalent to	<u>3</u> 4		
c)	$\frac{2}{4}$ is equivalent to	<u>3</u> 6		
d)	$\frac{2}{3}$ is equivalent to	<u>4</u> 5		
e)	$\frac{2}{3}$ is equivalent to	<u>4</u> 6		
f)	$\frac{3}{5}$ is equivalent to	$\frac{4}{6}$		

Write your own equivalent fractions statements. Ask a partner to say if they are true or false.

5	Are the statements always	, son						
	Circle your answer.							
	Draw a diagram to support yo							
	a) The greater the numerator, t							
	always	som						
	b) Fractions equivalent to c	one k						
	always	som						
	c) If a fraction is equivalen be double the numerator	it to r.						
	always	som						

metimes or never true?

ur answer.

the greater the fraction.

netimes

never

half have even numerators.

netimes

never

one half, the denominator will

netimes

never

