Equivalent fractions (1)

Shade the bar models to represent the equivalent fractions.

a)

ı)		
	1	1
	$\overline{2}$	$\overline{2}$

b) __

<u>1</u>	_
_	
2	

 $\frac{1}{2} = \frac{5}{10}$

c)

-,	1	<u>1</u>	1	<u>1</u>	1
	5	5	5	5	5

$$\frac{4}{5} = \frac{8}{10}$$

d)

1	1	1	1
4	4	4	4

$$\frac{6}{8} = \frac{3}{4}$$

2 Use the fraction wall to complete the equivalent fractions.

	-	<u>1</u>		1/2				
-	$\frac{1}{4}$ $\frac{1}{4}$				<u>1</u> 4	- 4	<u>1</u> 4	
1/8	1/8	1/8	1/8	1/8	1/8	1/8	<u>1</u> 8	

a)
$$\frac{1}{2} = \frac{4}{4}$$

c)
$$\frac{2}{4} = \frac{4}{1}$$

e)
$$\frac{1}{8} = \frac{3}{4}$$

b)
$$\frac{1}{2} = \frac{1}{8}$$

d)
$$\frac{2}{8} = \frac{4}{4}$$

f)
$$\frac{2}{2} = \frac{4}{4} = \frac{8}{8}$$

a) Label the fractions on the fraction wall.

1									

b) Use the fraction wall to complete the equivalent fractions.

$$\frac{1}{3} = \frac{\boxed{}}{6} = \frac{3}{\boxed{}}$$

$$\frac{\boxed{}}{3} = \frac{4}{\boxed{}} = \frac{6}{9}$$

$$\frac{3}{\boxed{}} = \frac{6}{\boxed{}} = \frac{9}{\boxed{}} = \frac{9}{\boxed{}}$$

Equivalent fractions (1)

Use the fraction wall to complete the equivalent fractions.

	<u>1</u>	<u>1</u>		1/2				
- 4	$\frac{1}{4}$ $\frac{1}{4}$			- 4	<u>1</u> 4	1/4		
1/8	1/8	1/8	1/8	1/8	1/8	1/8	1/8	

a) Label the fractions on the fraction wall.

1											

b) Use the fraction wall to complete the equivalent fractions.

$$\frac{1}{3} = \frac{\boxed{}}{6} = \frac{3}{\boxed{}}$$

$$\frac{\boxed{}}{3} = \frac{4}{\boxed{}} = \frac{6}{9}$$

$$\frac{3}{\boxed{}} = \frac{6}{\boxed{}} = \frac{9}{\boxed{}} =$$

Here is a fraction wall.

		1/2							
1/3			1/3			1/3			
1/4	1/4		1/4			1/4		1/4	
<u>1</u> 5		<u>1</u> 5		<u>.</u>	<u>1</u>		<u>1</u> 5		<u>1</u> 5
<u>1</u> 6		<u>l</u>		<u>1</u>	<u>1</u> 6		1/6		<u>1</u>

Is each statement true or false?

- a) $\frac{1}{2}$ is equivalent to $\frac{3}{6}$ d) $\frac{2}{3}$ is equivalent to $\frac{4}{5}$
- **b)** $\frac{2}{3}$ is equivalent to $\frac{3}{4}$ **e)** $\frac{2}{3}$ is equivalent to $\frac{4}{6}$

- c) $\frac{2}{4}$ is equivalent to $\frac{3}{6}$ f) $\frac{3}{5}$ is equivalent to $\frac{4}{6}$

Write your own equivalent fractions statements.

Ask a partner to say if they are true or false.

Are the statements always, sometimes or never true? Draw a diagram to support your answer.

- a) The greater the numerator, the greater the fraction.
- b) Fractions equivalent to one half have even numerators.
- c) If a fraction is equivalent to one half, the denominator will be double the numerator.

